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In general for derivatives of any order k 

k at%r ’ 
m+r=k, 

estimates of the error O(&) are similar to 

(k + 1) l-l1 Cp + 1) > 0. 

1. 
2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

O<m, r<k,<l-2 

(4.6), (4.9) with the exponent d = d(k) = [I- 
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THE TECHNICAL STABILITY OF PARAMETRICALLY EXCITABLE DISTRIBUTED PROCESSES* 

K.S. MATVIICHUK 

The technical stability /l, 2/ - in a finite interval of time - of 

parametrically excitable processes with distributed parameters, i.e. 

processes described by partial differential equations with time-dependent 

(particularly time-periodic) coefficients, is investigated. Using the 

comparison method /3-6/in conjunction with Lyapunov's second method /7/, 
the sufficient conditions for technical stability /l-6/ with respect to 

a specified measure are obtained. The determination of the corresponding 
differential inequalities of the comparison /4/ rests on the extremal 

properties of Rayleigh's ratios for selfadjoint operators in Hilbert 

space /8-12/. This approach is connected with the solution of the 
eigenvalue problem. The results obtained are used to establish the 
sufficient conditions using the specified measure in the problem of a 
clamped support /9/ loaded with some longitudinal force, particularly one 
which is time-periodic. At the same time the domain of technical stability 
is connected with the small parameter and the conditions of positive 

definiteness of Lyapunov's functional and the boundedness of the correspond- 

ing eigenvalues /ll, 13, 14/. The technical stability of distributed- 

parameter systems for constantly acting perturbations have been investigated 

previously /l/, and the technical stability of processes with after-effect 

was examined using an axiomatic approach /2/. The problem of the technical 

stability of some systems which simultaneously contain distributed and 

lumped parameters was considered in /15/. 

1. A theorem on the technical stability of parametrically excitable 

processes. Consider a class of dynamic processes inthedomain DC RV with boundary C, 

where RV is a v-dimensional Euclidean space with the vector of coordinates m = (51, . . ., 2,). 

*Prikl.Matem.Mekhan.,50,2,210-218,1986 
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described in a finite interval of time T,C T = It,,-/- 00) by an equation with boundary and 

initial conditions 

au (t, x)/at = L (t) u (t, z), x E D, t E T, (1.1) 

Gu (t, z) = 0, z E C (1.2) 

u (to, 5) = uo (a t, E T, (1.3) 

Here u(t,r) is a 2N-dimensional vector of state, uO(z) is a function which has all 

partial derivatives of the necessary order in the domain D CRV, and L(t) is a 2N x 2N matrix 

of linear differential operators in partial derivatives with respect to the spatial variable, 

with time-dependent continuous coefficients (in particular, those that satisfy some conditions 

of periodicity). The parametrically excitable processes with distributed parameters are 

described using systems (l.l)-(1.3) G is a linear differential operator with respect to the 

spatial variable that is not time-dependent. We formulate the following problem: it is required 

to investigate the technical stability of the state u (t,s)=O of process (l.l)-(1.3). 
We introduce into consideration the real functional space H of the 2N-dimensional vectors 

of the continuous functions, defined in T, X D. For each pair of vectors z,,z,EH we shall 

determine the scalar product 

(21, zz)= a'@, x)zz(t, x)dz S (1.4) 
D 

(the prime denotes transposition). Henceforth, we will assume that the space H is extended in 

a way that it is Hilbertian /S, 12/. We shall denote the norm in it, induced using the 

scalar product (1.4), by 11 * 1). 

Suppose the set W of states of the process is a subset of the set H, the elements of 

which satisfy the boundary conditions (1.2) and other conditions of smoothness guaranteeing 
the continuity of the function L(t)u in T, X D for the operator L(t) that acts in the 

domain W. Then we can compare the element of the set W with each solution u(t,z) of problem 

(l.l)-(1.3) for each instant of time t, the solution u(t,z) itself forms some trajectory in 

W, and L(t) is an operator in H which acts in the domain WC H, which we shall write as 

L (t): w--f H. 
Consider problem (l.l)-(1.3) in the domain 

Q = {t, 5, U: t E T,, 5 ED c RV, 11 u 11 <a = const > 0, 

VuEWcH, L(t): W-+H} 

For each pair u,uE W we shall determine the measure characterizing the degree of 
closeness between the two states 

P(U,V) = [(Aoz, As) + &‘lA .‘wlV~ 1 z=u--u 

where A, = E is the identity transformation operator, and A,, A%,...,A, are linearoperators 
in II of order j = 1,2,...,n respectively, that act in the domain W, are not time-dependent 

and are differential with respect to the space variable. Obviously, we have 

p (u, 0) = [(u, U) + i$l (Us Ai*AiU)]*” = (u, Mu)“‘, M = E + i$l Ai* (1.5) 

Integration by parts is carried out using boundary conditions (1.2), by virtue of which 

the boundary values that emerge equal zero; Ai* signifies the operator which is adjoint to 
the operator Ai /3, 12/. 

We can verify that P(u,v) satisfies all the axioms of the measure of the processes in 

the general case /l, 2, 16, 17/. 

Consider the functional 

v Iu, t1 = (u, B (t) u) (1.6) 
The operator B(t): H+H can generally contain the necessary differential elements which 

are linear with respect to the space variable, like the matrix has the same dimensions as 

L @)* and is a selfadjoint operator in the following sense: 

(0, B (t) w) = (w, B (t) v), v, w E W (1.7) 
Therefore the functional V is explicitly time-dependent thanks to the time-dependent 

operator B(t): H+H. We also assume that B(t) contains coefficients for which B(t) is t- 
differentiable. Suppose the operator B-l(t), inverse to B(t) exists. In addition, we shall 

specify the operator B(t) in such a way that the functional VIu,tl is positive definite 
with respect to the measure p(u,O), i.e. 

v[% tl > up2 (u, o), vt E T, n T, (1.8) 
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for some constant a>O. Obviously, by virtue of (1.5) condition (1.8) has the form 

(u. IB (t) - cm u ) > 0, a > 0 W) 

Definition 1. The unperturbed process u(t,z)= 0, corresponding to the boundary value 

problem (l.l)-_(1.3),is termed technically stable in the finite interval TIC T with respect 

to the specified measure p(u,O), if, along the perturbed solution u(t,z) of problem (l.l)- 
(1.3) for the positive definite functional V[u,tl with respect to the measure p(u,O) for 
the specified operator B(t): H +H the condition V[u(t, cc), tl< P(t), t E T, holds as soon 

as VI~(t,,z),t,] < b, where the function P(t) defined in the interval T, satisfies the 

condition 

P@o)>b, P=&p{P(t))<+~o, b=const>O 

At the same time the function P(t) and the constants b and Tl are specified in advance. 

We will assume that the operator L* (t), which is adjoint to the operator L(t) is known. 

Suppose the operator N(t): W+ W equals N (t) = L* (t) B (t) +- L (t) B (t) + B‘ (t), where B’ (t) = 
dBldt, and we have the eigenvalue problem 

N (t) u = hB (t) u, u E W, t ET, (1.10) 

for the specified boundary conditions (1.21, the eigenvalues of which are real and bounded 
quantities {h(t)} for all t E T, /la/. 

We shall use LX(t) to denote the maximum eigenvalue of problem (1.10). 

Consider in the domain 

A = {t, y, Lar (t): t E TV c T, - m < y< + 00, 

1 &,,a= (t) I < k, k = const > 0) 

the function 0 (t, y, Lx (t)), which is continuous in A and vanishes when y = 0, and also the 

corresponding scalar Cauchy problem 

dyldt = @ 0, Y, Lx (t)), Y (to) = Y, (1.11) 

Definition 2. The solution Y(t)= Q(t,t,,y,,&,) of problem (1.111, emerging from the 

point (t,, y,)E A and existing in the interval T,c T which contains within it the point t,, 
will be termed upper (y-upper), if the inequality cp (t)< j (t), tE T, holds for all t E T, C 
T, bounded by the value Lax(t) for any other solution cp (t) = rp(t,t,, y,,&.,(t)) of problem 
(1.11) which emerges from the point (t,, y,)E A and is determined in T,c T_ 

Definition 3. Eq.(l.ll) is called a generalized comparison equation for the above 

initial condition for the class of processes (l.l)-(1.31, if the inequality V[u(t, &),t] <<Y(t) 
holds in the combined interval of time TV I-l T, of the existence of the solution 

u(t,s) of problem (l.l)-(1.3) and of the y-upper solution y (t,t,,y,, Lx) of problem (1.11) 

along the solution u(t,z) of problem (l.l)- (1.3), satisfying for each tE TV and finite 

1,. (t) the condition u(t,s)~ WC H. 

Theorem. We will assume that 
1) the differential operator L(t) of problem (l-l)-(1.3) for the specified properties 

of regularity of its coefficients is an operator in H, which acts in the domain WCH; 
2) the functional V[u,t] = (u,B(t)u), - which is positive definite with respect to the 

measure ~(14.0) - 'exists, where B(t): H-F H is a selfadjoint operator in the sense of 

definition (l-7), satisfying the necessary properties of differentiability with respect to t; 

3) the operator L(t) satisfies the following conditions: a) for L(t) the adjoint 
operator L* (t) exists, such that for all u,u) E W the equation (L(t)v,B(t)w) = (v,L* (t)B 
(t)w) holds; b) in the eigenvalue problem (1.10) the operator B’(t)N(t), where B-‘(t) is 
inverse to the operator B(t), is compact /12/ for all t E T, c T (to E T,, t, E T,, T, C T,). 

4) the upper solution g(t)= ij(t,t,, y,,,&,(t)) of the scalar comparison-type problem 

(l-11), corresponding to the maximum eigenvalue ha.(t) of the eigenvalue problem (l.lO), 

satisfies the inequalities y (t) Q P W, 4 kJ < h 6 to E TI f-l Ts. 
Then the dynamic processes described by Eqs.(l.l) and boundary conditions (1.21, (1.3) 

in the Bilbert space H are technically stable using the measure p(u, 0) in the domain 52 in 

a finite interval of time T, n T,. 

Proof. Bearing in mind conditions l)-3) and formulating V(t) = J'lu(~4, tl, we shall 

calculate the time-derivative from the functional V Iu,tl along the solution u(~,z)E WCH 

of problem (l.l)-(1.3) 

dV (t)/dt = (L (t) u, B (t) u) + (u, B (t) L (t) u) + 
(u, B’ (t) u) = (w N (t) u) 

Here 

N (t) = L* (t) B (t) + B (t) L (t) + B’ (0 (1.12) 
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Along the trajectories u(t,z), w(t,S)E w we shall calculate the time-derivative from 

both sides of Eq.(1.7) 

-g(v,B(t)w)=(-g., B 0) w) + (u, B’ 0) 4 + 

(u,B(+$)=(v.~*(t)B(t)w)+(v, B(t)L(t)w)+ (v,B’(t)w)= 

(vs N(t) 4, -$ @A B 0) 4 = (w, NW ~4 

Consequently, the operator N(t) is selfadjoint in the sense of definition (1.7). 

According to condition 3b) of the theorem, problem (1.10) with the operator (1.12) for all 

TV T,c T has only finite real eigenvlaues, i.e. its maximum eigenvalue LX (t) is a bounded 

real quantity /0, 12/. 

Bearing in mind the above, consider the ratio of the two scalar products a (u, t) = (u, 

N(t) u)/(u, B(t)u). It follows from the theorem on the extremal properties of the ratios b(u, t) 

that 
h (u, t) < LKIX (t), t E T, c T 

Then we have the following estimate along the Solution u(t, z) of 

$v [U(t,z),tl< hmzu(t) Y [u(t, 2). a tczT1 

Estimate (1.13) enables us to consider /3--6/i&e following scalar 

type (l.ll), generated by the eigenvalue problem (1.10). 

dYjdt = a,,, 0) Y. Y 0.) = Y, > Y 1~ (to. r), t,] t > t,, 

t, t,~ T, c T 

i.e. we shall take as the function 

Q, 0, v(t), am,, w) = amax 0) v IU 0, 2). tl 
Using the upper solution of problem (1.14), which are equals 

y(t) =YoF (Q, 

problem (l.l)-(1.3) : 

(1.13) 

Cauchy problem of the 

(1.14) 

according to the theorem on differential inequalities(/ll/),Theorem 9.5 ), we have the 

following estimate along the solution u(t,z) of boundary value problem (l.l)-(1.3) for the 

positive definite functional V[u, t] using the measure p(u, 0) 

v hJ (t. 2). tl < Y, F (t) Q zJ (t) 

The right-hand side of this inequality follows from conditions 4) of the theorem. 

In addition, bearing in mind the conditions of problem (1.14), we have the inequalities 

VIu(t,, I), tol<yYo< b when t = t,. 
The function P(t)and the constant b are specified in‘advance according to Definition 1. 

Consequently, the processes of (l.l)-(1.3) are technically stable in the domain Q in the 

finite interval of time T, n T, using the measure p(u, 0). The theorem is proved. 

2. The technical stability of a support with clamped ends, loaded with a 
dynamic longitudinal force. The motion of the support is described using an equation 

with initial and boundary conditions /9, 19/ 

~=_e&j(t)E.+f+ (2.1) 

w (t, 0) = w (t, 1) = 0, a9 (t, 0)/i% = aw (t, i)/i32 = 0 

where w0 (z), v0 (z) are quadruply continuously differentiable functions with respect to XE 

DZ [O, 11. We assume, in particular, that the force .j(t) varies cosinusoidally with time 

j(t) = 49 (R, + R,cos ot) (2.2) 

Here P, is the constant component ofthecompressible force, PI is the constant of the 

amplitude of the pulsating component of the longitudinal force,1 is the length of the girder, 
E is Young's modulus, I is the moment of inertia of the cross-section of the girder with 
respect to its axis, passing through its centre of mass, and fi is the damping factor. 

A different regular representation is also permissible for the force j(f) 

We can write problem (2.1) in the form 
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u (t, 0) = u (t, 1) = 0, 
a+, 0) 
a+ 

auct,u =o 
=as 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

me shall denote the finite interval of time 2' = [0, Lp-‘1, p is a small positive parameter, 

and the constant L>O in general depends on the parameters of the system. Consider the real 

Hilbert space II of the vectors u = {ul (t, x), u2 (t, x)} with the continuous functions n1 (I, I), 
u,(t,s)when te T,XE D, for which the scalar product of each pair 

(u, u)=d $ ui(t, x)z'i(t, x)dr~ U,VEN 
i=l 

The operator L(t) is an operator in If, which is effective in the domain w(T X D), i.e. 

L (t): W * H. The domain of definition w of the operator (2.4) is a set of two-component 

vectors u ={ul(tr x), u,(t, x)}~ H, the components of which have the partial derivatives with 

respect to x of the fourth-order inclusive which belong to the Hilbert space La(D) for each 

tE T and which satisfy boundary conditions (2.6). Then the solution of problem (2.3)-(2.6) 
ZJ (t, 5) for all tE T determines the trajectory in w. 

We shall take as the measure of p (u, 0) in WCH 

,,u,o,={~ [(g,‘+(~,‘++tqq 
0 

Hence, bearing in mind boundary conditions (2.6), we obtain the following representation 

for the operator M: 

ME iti I a*+1 0 --ygT 

0 1 I (2.7) 

The conjugate operator L*(t) in this case (bearing in mind boundary conditions (2.6)) 
has the form of a matrix transposed in matrix (2.4). 

To use the comparison method based on an analysis of the eigenvalue problem corresponding 

to (2.3)-_(2.6), consider the functional 

V Iu, tl = (u, B (t) u) (2.8) 
where the operator B(t) is determined in the form of the following matrix: 

B(t) = 
$$+v(t)$+6+ 

P/2 
6*=&$ (2.9) 

(Y 0) is some cofficient which is continuously time-differentiable tE f0: Lp-‘I, and a is some 
constant parameter). The functional V is positive definite with respect to the measure p(u, 0) 

with the conditions 

OCP<1, (1-ld4nZ-(p+e)>y(t) (2.10) 

ct1>p-+en”++qj, e=const>O 

which follow from the inequality (u, [B(t)- pMlu)> 0, where the operator 11 is defined by (2.7). 
From (2.4) and (2.9) for N (t) = L* (t) B (t) f B (t)L (tj + B’ (t) we obtain the representation 

--B-&w --g(t) y& + & 
N(t) = 

-_gW&--+ --B I 

(2.11) 

h 0) = Bf (1) - -$ Y WV gw=fw--Ytt) 

The eigenvalue problem, which corresponds to Eqs.(2.9)-_(2.11), is determined using an 

operator equation of the type (l.lO), and the unknown eigenvector YEW is a two-component 
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vector: y = (yr,y,). Using the exclusion method this system only reduces to an equation for one 
component, for example yr: 

$$ + k (t) 2 + c(t) y1 = 0 

k(t) = (a t- B) rh v) + AY w + 2~ (t) (a_ - w2) 
(h. + BP - P w 

c(t) = h (b + B) a+ - (a_ - w2) 
v. + BY -g* VI 

(2.12) 

(2.13) 

The function y, satisfies the zero boundary conditions 

Yi(t, O)=Yr(t, 1)=0, s(t, 0) = * (t, 1) = 0 (2.14) 

Eq.(2.2) or a corresponding system of the (1.10) type has constant coefficients for fixed 
t. In this case, the characteristic equation which corresponds to (2.12) has the roots +i 

-~ 
(k/2 f Jfka/4 - c)‘/x (any set of signs) . Let us consider further the case when the coefficient 

k (t) is positive for all tE [O, I+-‘]. For these values of I: and t we obtain two series of 
eigenfunctions, namely: 

a) when c>O and ka>4c 

yl (6 5) = Cl (t) sin rl.z + C, (t)cosrlx + C, (t) sin r,r + 

c, (t) cos7,x; rl,% = (k/2 f l/kV4 - c)% 

where the quantities rr, F,, as follows from (2.14), satisfy the condition 

2r,r, (cos rl co9 F, - 1) + (rl* + rz*) sin rr sin r, = 0 

b) when c<O and k’>4c 

y, (t, x) = C, (t) sin F,S + C, (t) cos rlx -I- C3 (t) sh F,X $ 

C, (t) ch F,X; rl, s = ( f k/2 + f kV4 - c)‘/l 

(2.15) 

where the quantities r,, r2, according to Eq.(2.14), satisfy the condition 

2r,r, (cos r,ch F, - 1) + (rIz - raa) sin r,shr, = 0 (2.16) 

It follows from the conditions of this eigenvalue problem that an infinite discrete set 
of eigenvalues h, exists, for which the pairs of numbers (k,,,c,,), corresponding to the numbers 

&X9 will satisfy conditions (2.15) or (2.16). For the maximum eigenvalue for each t E 10, 
-&-'I we have 

hmax (t) = max - fI - Y’ 0) 

%I 2P,--VW1 + 

Y’ w 
2 Ik, -Y WI > 

‘t + - 2~ (0 8, RP w 
k, - Y VI + 1 -v(t)& 

(2.17) 

The quantity (2.17) becomes unbounded when k, = r(t)(~ (t)>O) for some integral R. In this 
case from (2.13) there follows the equation 

c, (h + B)" - 4c,y_B(t) 6+8 = a, (h + B)' - 6+a 

from which, of necessity, it follows that 

y2 (t) = 4c,, c, = a, (2.18) 

for the above integral R. Hence also k,,% = 4c,,. Therefore the eigenvalue will be unbounded 
when the pair (k,,c,,)=(Y,aJ satisfies one of conditions (2.15) or (2.16). But this is not 
practicable for, as follows from (2.18), such a pair contradicts conditions a) and, moreover, 
conditions b) . Consequently, the conditions of the initial problem, including the conditions 
of positive definiteness (2.10) of the functional (2.8), guarantee the boundedness of the 
eigenvalues of the problem for the operator (2.11). On the other hand, the conditions of the 
initial problem satisfy the conditions of the theorem proved in Sect.1. 

Thus, for any integral n k,# v(t) for all tE[O, Lp-11. Therefore all k,, (n = 1, 2,. . .), 
as follows from conditions (2.10), must satisfy the inequality 

k,,> (1 - p) 4na - (p $- e), n = 1,2,. . . (2.19) 

for each tE IO, Lp-ll together with conditions (2.15) or (2.16). In addition, for any fixed 
tE IO, Lp-‘I the quantities k,, can be arranged in the order in which they increase: k,<k, < 
k,<... . Therefore for each fixed instant of time t, as follows from (2.17), maximum 1 is 
attained either when k = kl, or when k = k, as a function of the value of t. If 
the quantity k.,, approaches the limit h, = - fJ f- g(t).Consequently, the quantity 

kn+=, 
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which obviously depends on conditions (2.15) or (2.16) and (2.19), makes sense. 
We shall characterize the fixed value ji of the small parameter n, which satisfies the 

conditions (2.10), (2.19). Let us consider, in the interval [O,Z,p-'I the corresponding 
Cauchy problem (1.14) for the initial condition ~(t)]~_, = y, > V[u,, 01, where V[U,, 0] = (n,,(z), 
B (0) u,(z)), and the operator B(O)= B(t)lt, according to (2.19). 

Calculating the time-derivative from the functional V [u,t] along the solution of 

problem (2.3)-(2.6) or, which amounts to the same, along the solution of problem (2.1), we 
obtain the inequality 

dV Iu (t, z), tlidt < h,,, (t) V [u (t, z), tl, t E 10, &-‘I 

Then when t E [O, LF_Il n 10, QL-~] along the solution w(t, 2) of the initial system the 

following system holds: 

(2.20) 

Therefore, by virtue of the theorem proved in Sect-l, the initial system (2.1) in the 

Hilbert space H with the above conditions on its parameters is technically stable in the 

finite interval of time (2.20) with respect to the measure p(u, 0). 

The author thanks Ya. F. Kayuk for his interest. 
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